

Ondřej Caletka | RIPE NCC | 22 October 2024

RIPE Meeting Network

How we run a conference network for a networking conference

What is a **RIPE** Meeting

A week-long event twice a year

- 600+ attendees from all over the world
- Next up: **RIPE 89 Prague**, 28 October 1 November 2024

With a custom temporary Wi-Fi network

- AS2121
- 193.0.24.0/21
- 2001:67c:64::/48

Ondřej Caletka | RIPE NCC | 22 October 2024

Geolocation Issues

BSSID-based geolocation

- Based on assumption that APs do not move
- Issues with Google **disappeared around 2016**

IP-based geolocation

- Privately curated lists by many commercial parties
- We publish a CSV list for Google
- This is now standardised as RFC 8805
- You have to tell providers; RFC 9092 discovery is not very popular
- We have a list of 7 geolocation providers to check prior every meeting; two still need manual updates

Amsterdam - Warsaw - Athens in one hour, 2014, coloured

Physical Network

- Two VM hosts running VMware vSphere
 - SuperMicro SuperServer E300-9D-8CN8TP
 - 25 VMs including routers, firewalls, DHCP servers, DNS resolvers, Wi-Fi controller
- Switches
 - Juniper EX2200 (48×GE PoE+ + 4×10GE SFP+)
 - **Zyxel GS-1900-10HP** (8×GE PoE+, 2×SFP, VLAN)
 - MikroTik CRS305-1G-4S+IN (4x10GE)
- Access Points
 - Unifi UAP AC (S)HD

CN8TP OHCP oller

OGE SFP+) ×SFP, VLAN) E)

Testing After Covid Break

Ondřej Caletka | RIPE NCC | 22 October 2024

The Meeting Network Runs on Open Source

- Edge routers running BIRD
- Firewall using **nftables**
- DNS resolver cluster of Knot Resolver/BIND
- DNS load balancer running keepalived
- DHCP servers running Kea
- NAT64 using Jool
- Statistics collected using collectd + InfluxDB + Grafana
- Deployed using Ansible

Logical Network Topology

Ondřej Caletka | RIPE NCC | 22 October 2024

Using IPv6-Mostly for the Meeting Network

- Dual-stack network with NAT64, DNS64 and PREF64 RA option
- Devices decide themselves whether they need native IPv4 or not
- **IPv6-only is preferred** by 70+ percent devices
- Requires **perfectly working IPv6**, as well as NAT64/DNS64

NAT64

Issues with NAT64

- Browser console reports **403 Forbidden**

• We use the Well-Known NAT64 prefix and a **pool of 256 IPv4 addresses**

Everything works, except some VOD platforms (NOS.nl, ivysilani.cz, ...)

Some VOD Platforms Care About Source IPv4 address

Client

1

GET token

token = F(**client IP**,...)

GET video?t=token

Ondřej Caletka | RIPE NCC | 22 October 2024

<

Jool IPv4 Allocation Strategy

- IPv6 packet
 - by default: source IPv6, destination IPv6, destination port -
 - hash collisions are resolved by a (slow) iterative process -
- Global option f-args influence what is hashed

 - but all sessions made by one host are causing collisions
- There's a <u>branch of Jool</u> with Ondřej Caletka's hashing algorithm
 - uses two hashes, one for choosing IPv4 address, other to choose port
 - no measurement data to prove it is indeed better, not merged

• Address and port tuple is determined by **hashing some parts** of the

setting it to 8 (source IPv6 only) resolves the issue with the VOD platforms

USING LINUX AS A ROUTER

IPv6 Neighbor Advertisement (RFC 4861)

R - Router flag. When set, the R-bit indicates that the sender is a router. The R-bit is used by Neighbor Unreachability Detection to detect a router that changes to a host.

Symptoms

- Everything works after network attachment
- Linux hosts work forever
- macOS loses default gateway after 6 seconds

Ondřej Caletka | RIPE NCC | 22 October 2024

What makes a Linux router respond with R=0?

- Turned out this to be the (only) feature of perinterface forwarding sysctl switch
- IPv6 forwarding is just a **global switch** on Linux
 - yet there are still per interface switches
- NetworkManager used to reset per-interface switch during interface setup
 net.ipv6.conf.all.forwarding = 1
 - fixed in version 1.44.0

4

- net.ipv6.conf.default.forwarding = 1
- net.ipv6.conf.lo.forwarding = 1
- net.ipv6.conf.eth0.forwarding = 0
- net.ipv6.conf.eth1.forwarding = 0

NetworkManager vs Full BGP Feed

- Burns CPU just by listening to all netlink events
- Worked around by **stopping it after** boot
- Fixed earlier this year

Dealing with ARP Noise

- Caused by omnipresent Internet-wide scans
- Kernel-space ARP implementation has no negative cache
- **arpd** to rescue!
 - part of iproute2
 - implements ARP in userspace
 - has **negative cache**
- 30 times less ARP messages on an empty network
 - before: **250 pps**, 84 kbps
 - after: **8 pps**, 2.7 kbps

arpd -k -a2 eth0 eth1 eth2 eth3

Wi-Fi Network

- UniFi controller running on Debian Linux
- Manual channel configuration, mostly 5 GHz only
- Legacy eSSID names changing every meeting
- Multicast and Broadcast control kills IPv6 NDP
 - you have to allow-list MAC addresses of all wired IPv6 hosts
 - unintended **RA-guard-like function**

RIPE 88 Wi-Fi stats

Questions & Comments

Ondrej.Caletka@ripe.net https://Ondřej.Caletka.nl

